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Clinically important alterations in pharma-
cogene expression in histologically severe
nonalcoholic fatty liver disease

Nicholas R. Powell 1, Tiebing Liang 2, Joseph Ipe1, Sha Cao 2, Todd C. Skaar1,
Zeruesenay Desta1, Hui-Rong Qian3, Philip J. Ebert3, Yu Chen3,
Melissa K. Thomas3 & Naga Chalasani 2

Polypharmacy is common in patients with nonalcoholic fatty liver disease
(NAFLD) and previous reports suggest that NAFLD is associated with altered
drug disposition. This study aims to determine if patients with NAFLD are at
risk for altered drug response by characterizing changes in hepatic mRNA
expression of genes mediating drug disposition (pharmacogenes) across the
histological NAFLD severity spectrum. We utilize RNA-seq for 93 liver biopsies
with histologically staged NAFLD Activity Score (NAS), fibrosis stage, and
steatohepatitis (NASH). We identify 37 significant pharmacogene-NAFLD
severity associations including CYP2C19 downregulation. We chose to validate
CYP2C19 due to its actionability in drug prescribing. Meta-analysis of 16 inde-
pendent studies demonstrate that CYP2C19 is significantly downregulated to
46% in NASH, to 58% in high NAS, and to 43% in severe fibrosis. Our data
demonstrate the downregulation of CYP2C19 in NAFLD which supports
developing personalized medicine approaches for drugs sensitive to meta-
bolism by the CYP2C19 enzyme.

Nonalcoholic Fatty Liver Disease (NAFLD) is one of the most common
liver diseases, affecting 25% of the world’s population1. If untreated,
NAFLD progresses to non-alcoholic steatohepatitis (NASH), liver
fibrosis, and eventually cirrhosis. While diet, weight-loss, and gastric
bypass surgery are effective treatments2,3, there are currently no FDA-
approved drugs to treat NAFLD. Since NAFLD is highly associated with
obesity, diabetes, hypertension, hypercholesterolemia, and cardio-
vascular disease4–9, drugs used to treat cardiometabolic conditions
(e.g. clopidogrel) are frequently used in NAFLD patients. However,
most of these drugs were not originally studied in NAFLD-specific
patient populations. For example, of 3 big trials demonstrating the
lifesaving antiplatelet effect of clopidogrel (CURE, CAPRIE, CLARITY-
28)10–12, none published NAFLD subgroup analyses and one even
excluded patients with hepatic insufficiency. Therefore, the approved
dosages or other findings from these original drug studies may not be

representative of people with NAFLD. Thus, in this study we aimed to
determine if NAFLD patients could be at risk of altered drug response
by identifying changes in the hepatic expression of genes thatmediate
drug disposition (pharmacogenes) across histological NAFLD severity.

Pharmacogenes code for proteins involved in the disposition and
response to drugs like anti-hypertensives, lipid-lowering agents, anti-
platelets, and agents used to treat diabetes. Many of these drugs are
substrates for pharmacogenes like the cytochrome P450 (CYP) meta-
bolic enzymes as well as the ATP-Binding Cassette (ABC) and Solute
Carrier (SLC) transporters. Changes in the expression of these genes
can impact the response to these drugs via increased or decreased
absorption, distribution, metabolism, or excretion (ADME)13–17.
Knowledge of mRNA expression changes for pharmacogenes has
precedence for translating to clinical actionability and adoption into
clinical practice, improving successful drug response rates13–17.
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The clinical importanceof pharmacogene expression is also evidenced
by 483 FDA drug labels warning of drug-drug interactions and genetic
variants that alter the activity of pharmacogenes mediating patient
exposure to that drug18. Diseases can also alter pharmacogene
expression, but have been less studied compared to drug-drug inter-
actions and pharmacogenomics. NAFLD is a disease characterized by
the deposition of lipids in liver tissue that is accompanied by sig-
nificant inflammatory signaling. Inflammation alters pharmacogene
expression19–23 and therefore it is mechanistically plausible that
patients with NAFLD would not respond normally to many drugs due
to altered pharmacogene-mediated drug disposition.

Existing reports of pharmacogene expression changes in livers of
patients with NAFLD is limited to a few studies24. Two studies used
CYP-targeted real-time PCR25 or a whole transcriptome array focusing
on absorption, distribution, metabolism, or excretion genes26, and
their findings indicate that CYP enzyme and transporter mRNA
expression is altered in steatosis and NASH. Another study found dif-
ferences in the abundance of certain pharmacogene proteins in
NAFLD-cirrhosis, however the sample size was limited (n = 9 cases) and
statistically significant conclusions were not made27. Other targeted
studies found CYP3A4 protein and activity was downregulated and
CYP2E1 protein and activity was upregulated in NASH vs. controls27–29.
Collectively, the findings indicate that certain pharmacogenes may be
altered in NASH vs. controls, but pharmacogene expression char-
acterization in other clinically used histological severity markers, like
fibrosis and NAFLD activity score (NAS), are still lacking in the litera-
ture. Two separate studies reported one pharmacogene, CYP2C19, is
downregulated in liverfibrosis30,31 andNAS31, however, pharmacogenes
were not the focus and the studies did not detail progressive changes
in expression across the spectrum of disease. Currently, there are no
studies detailing the range of pharmacogene mRNA expression chan-
ges that occur over the spectrum of histological disease measures
(NAFLD activity score, NASH grade, and fibrosis stage). Therefore, in
this studywe comprehensively analyzed the changes inpharmacogene
expression across the histological severity spectrum in NAFLD. Our
study consists of a larger cohort of liver biopsies, utilizes RNA-seq
technology, and utilizes linear regression for 3 clinically defined his-
tological measures of NAFLD severity (NAFLD activity score, NASH
grade, and fibrosis stage). Addressing this gap in knowledge regarding
progressive pharmacogene expression changes in NAS, fibrosis, and
NASH has important implications for improving patient care and for
NASH drug development.

Focusing on pharmacogenes is advantageous not only by the
potential for clinical actionability, but it also increases the likelihoodof
identifying true positive associations by avoiding transcriptome-wide
multiple-testing corrections. Other gene expression studies have been
conducted in NAFLD liver samples25,26,30–48, but since their focus was
transcriptome-wide, they needed to multiply their p-values by the
number of genes tested (often over 20,000) to obtain Bonferroni-
corrected significance values. Because of this, many pharmacogene
associations remain undiscovered and buried in raw data. Therefore, a
second aim of our study was to validate our findings by conducting a
meta-analysis in data obtained from 16 studies of transcriptome-wide
hepatic gene expression including our own. This 2-step methodologic
approach provides a higher level of statistical rigor to demonstrate the
magnitude of the validated pharmacogene expression changes in
NAFLD. Thus, in this study we determine if NAFLD patients could be at
risk of altered drug response due to changes in hepatic expression of
genes that mediate drug disposition across histological NAFLD
severity.

Results
We conducted linear regression analyses to identify associations
between liver expression of 255 pharmacogenes and NAS, fibrosis
stage, and presence of steatohepatitis in 93 individual liver biopsies.

The majority of the pharmacogene mRNA expression values that cor-
related with the histological phenotypes were unskewed indicating
normal distribution. All phenotypes showed good representation
across the range of disease severity. Table 1 shows the distribution of
these disease phenotypes along with other important clinical and
demographic information. In total, we identified 37 pharmacogene-
NAFLD severity associations thatwere statistically significant (p ≤0.05)
after Bonferroni correction (p-value multiplied by 255). We also per-
formed t-tests for disease groups (above or below the disease
threshold as described in themethods section) to identify 6 additional
genes that were statistically significant after Bonferroni correction. Of
the significant differentially expressed genes among the t-tests, 82%
were also significant in the linear regressions. We also identified 17
genes that were commonly significant for all 3 disease subgroups after
Benjamini-Hochberg multiple-testing correction. CYP2C19 had the
strongest effect size of any pharmacogene.

NAFLD activity score
The 14 Bonferroni-adjusted statistically significant individual phar-
macogene regressions for NAFLD activity score (NAS) are shown in
Fig. 1A. The NAS within our cohort ranged from 0–7, within a pos-
sible histological range of least severe (0) to most severe (8) dis-
ease. The direction of effect was positive (upward) for 9 of the
pharmacogenes and negative (downward) for the other 5. The result
with the lowest p-value was a positive correlation for ABCB4 with an
R2 of 36% (correlation coefficient 0.6). ABCB8, ABCC3, and SLC22A12
were also significantly upregulated, while AOX1 and SLC16A1 were
significantly downregulated with increasing NAS. Table 2 shows the
full list and the individual estimates from each regression. To better
visualize and compare these results, we plotted the slopes and p-
values for all 255 associations in the volcano plot shown in Fig. 1B.
The downregulation of CYP2C19 and ABCG2 met the less stringent
multiple-comparisons correction (Benjamini-Hochberg). Although
not statistically significant, CYP3A4, CYP1A2, and CYP2C8 trended
downwards. Other major CYP enzymes do not appear to be robustly
affected by NAFLD severity. Upregulated genes that met the less
stringent threshold are CES1, CES2, several ABC transporters
(ABCB1, ABCC5, ABCC4, ABCA4), SLC transporters (SLC03A1,
SLC28A1, SLC22A11), CYP21A2, and UGT2B15. In addition to the
regression analysis, we identified significant differences in phar-
macogene mRNA expression levels between the most severe dis-
ease (NAS 5–8) vs. the less severe disease (NAS 0–4), shown in
Fig. 2A. This dichotomous analysis identified the Bonferroni-
adjusted significant downregulation of CYP2C19.

Fibrosis stage
We also conducted linear regression analyses to evaluate pharmaco-
genemRNA expression levels across liver fibrosis stages (ranging from
0–4). There were 24 Bonferroni-adjusted statistically significant asso-
ciations, with 19 positive, and 5 negative (Fig. 3A). The result with the
lowest p-value was a negative correlation for GSTZ1 with an R2 of 33%
(correlation coefficient −0.57). CYP2C19 also had a strong negative
correlation with an R2 of 24% (correlation coefficient −0.49), and
SLC2A4 was also significantly downregulated. CYP1B1, ABCC1, ABCC4,
SLCO3A1, SLC6A6, and SLC22A17 were significantly upregulated.
Table 2 shows the full list and the individual estimates from each
regression. To better visualize and compare these results, we plotted
the slopes and p-values for all 255 associations in the volcano plot
shown in Fig. 3B. The downregulation of CYP2C8, SLCO1B3, SLC22A1,
SLC10A1, CYP4F2, CYP2J2, AOX1, and ABCG2 met the less stringent
multiple-comparisons correction (Benjamini-Hochberg). CYP1A2 and
CYP3A4 trendeddownward (consistentwith theNAS analysis) but were
not statistically significant. The upregulation of several minor CYP
enzymes (CYP3A7, CYP11A1, CYP21A2, CYP27B1, CYP2R1), ABC trans-
porters (ABCB1, ABCC10, ABCC5, ABCB4, and ABCC3), and SLC
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transporters (SLC22A5, SLCO2A1, SLC29A2, SLC22A15) met the less
stringent multiple corrections threshold. We also conducted t-tests
usingfibrosis thresholds of 0 vs.≥ 1 (Fig. 2C), ≤ 1 vs.≥2 (Fig. 2D), and≤ 3
vs. 4 (Fig. 2E) and identified an additional 6 Bonferroni-adjusted sig-
nificant associations, including CYP2C8.

NASH grade
The final disease phenotype we assessed was steatohepatitis (NASH),
categorized as 0, 1, or 2, representing no steatohepatitis, borderline
steatohepatitis, or definite steatohepatitis, respectively. There were
8 Bonferroni-adjusted statistically significant pharmacogene-
steatohepatitis associations, with 4 positive, and 4 negative (Fig. 4A).
The result with the lowest p-value was observed for MAT1A with a
negative correlation and an R2 of 27% (correlation coefficient −0.52).
CYP2C19 and AOX1 were also significantly downregulated. ABCB4 and
SLCO3A1were significantly upregulated. Table 2 shows the full list and
the individual estimates from each regression. To better visualize and
compare these results, we plotted the slopes and p-values for all 255
associations in the volcano plot shown in Fig. 4B. The upregulation of

ABC transporters (ABCC4, ABCC3, ABCC5) and SLC transporters
(SLC22A5, SLC28A1, SLC28A3, SLC22A12) met the less stringent
multiple-comparisons correction (Benjamini-Hochberg). CYP1A2,
CYP3A4, and CYP2C8 trended downward (consistent with the NAS and
fibrosis analysis) but were not statistically significant. We also con-
ducted t-tests using steatohepatitis thresholds of ≤ 1 vs. 2 (Fig. 2B),
finding no additional Bonferroni-adjusted significant associations
beyond what was found in the regressions. The full analysis results for
each pharmacogene for each NAFLD measure are provided in the
Supplementary Data 1–11.

Pharmacogene changes sharedbetweenNAS,fibrosis, andNASH
Because of the correlation between the 3 phenotypes of interest (NAS,
fibrosis, and NASH) (Supplementary Figure 1, and Supplementary
data 15, 16, and 17), it is useful to identify the pharmacogenes that are
commonly altered by all 3 of thesemeasures. Figure 5A shows an upset
plot49,50 (similar to a Venn diagram) of the Benjamini-Hochberg sig-
nificant pharmacogene associations, demonstrating that 17 pharma-
cogenes are changed in all 3 disease subgroups. Figure 5B shows the
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percent fold change values for the 17 common pharmacogenes
(numerical data provided in Table 3). CYP2C19 showed the largest
downregulation that was significant among all three diseasemeasures.
This analysis shows that with every 1 unit increase in fibrosis stage,
CYP2C19 transcript abundancedecreases to69% thatof theprior stage;
reducing CYP2C19 mRNA expression levels by 77% in individuals with
stage 4 fibrosis compared to 0. With every 1 unit increase in NAS,

CYP2C19 transcript abundancedecreases to83% thatof theprior score;
reducing CYP2C19 mRNA expression levels by 73% in individuals with
an NAS of 7 compared to 0. As an individual progresses from no-NASH
to borderline NASH to definite NASH, CYP2C19 transcript abundance
decreases to 61% that of the prior grade; reducing CYP2C19 mRNA
expression levels by 63% in individuals with NASH compared to those
without NASH.

Table 2 | Bonferroni-adjusted significant linear regression correlation estimates between disease sub-groups and
pharmacogenes

Gene Slope Unadjusted p value R-squared Adjusted p value (Bonferroni) Disease sub-group

ABCB4 0.14 1.77E-10 0.36 4.51E-08 NAS

GSS 0.05 6.46E-08 0.28 1.65E-05 NAS

SLC22A12 0.52 7.92E-08 0.27 2.02E-05 NAS

MAT1A −0.06 2.11E-06 0.22 5.37E-04 NAS

PON3 −0.08 2.94E-06 0.21 7.50E-04 NAS

DHRS7B 0.05 4.64E-06 0.21 1.18E-03 NAS

FMO1 0.28 2.22E-05 0.18 5.67E-03 NAS

ALDH6A1 −0.08 2.92E-05 0.18 7.45E-03 NAS

ABCB8 0.06 4.55E-05 0.17 1.16E-02 NAS

GSR 0.05 5.89E-05 0.16 1.50E-02 NAS

DHRS9 0.17 1.10E-04 0.15 2.80E-02 NAS

SLC16A1 −0.10 1.19E-04 0.15 3.04E-02 NAS

AOX1 −0.06 1.43E-04 0.15 3.66E-02 NAS

ABCC3 0.07 1.85E-04 0.14 4.72E-02 NAS

GSTZ1 −0.17 5.51E-09 0.33 1.40E-06 Fibrosis

SLCO3A1 0.24 7.34E-09 0.33 1.87E-06 Fibrosis

ABCC4 0.27 3.33E-07 0.27 8.50E-05 Fibrosis

MAT1A −0.09 3.76E-07 0.26 9.60E-05 Fibrosis

GSTP1 0.20 7.95E-07 0.25 2.03E-04 Fibrosis

CYP2C19 −0.37 1.90E-06 0.24 4.85E-04 Fibrosis

CHST9 0.22 2.23E-06 0.23 5.68E-04 Fibrosis

GPX7 0.24 2.96E-06 0.23 7.54E-04 Fibrosis

SLC28A3 0.35 3.28E-06 0.23 8.35E-04 Fibrosis

SOD3 0.36 5.62E-06 0.22 1.43E-03 Fibrosis

CFTR 0.40 9.04E-06 0.21 2.31E-03 Fibrosis

PDE3A 0.24 1.56E-05 0.20 3.98E-03 Fibrosis

SLC2A4 −0.24 1.67E-05 0.20 4.26E-03 Fibrosis

DHRS7B 0.08 2.26E-05 0.19 5.75E-03 Fibrosis

ABCC1 0.22 2.71E-05 0.19 6.92E-03 Fibrosis

ALDH3B1 0.14 2.86E-05 0.19 7.28E-03 Fibrosis

CYP1B1 0.15 4.35E-05 0.18 1.11E-02 Fibrosis

SLC22A17 0.19 6.17E-05 0.17 1.57E-02 Fibrosis

CHST4 0.33 6.28E-05 0.17 1.60E-02 Fibrosis

HSD17B14 −0.26 6.45E-05 0.17 1.65E-02 Fibrosis

SLC6A6 0.23 7.07E-05 0.17 1.80E-02 Fibrosis

CHST10 0.27 1.29E-04 0.16 3.30E-02 Fibrosis

CHST3 0.20 1.35E-04 0.16 3.45E-02 Fibrosis

ALDH1A3 0.23 1.40E-04 0.16 3.58E-02 Fibrosis

MAT1A −0.14 2.28E-07 0.27 5.81E-05 Steatohepatitis

CHST9 0.31 4.18E-06 0.22 1.07E-03 Steatohepatitis

CYP2C19 −0.50 5.98E-06 0.21 1.53E-03 Steatohepatitis

PON3 −0.16 3.44E-05 0.18 8.77E-03 Steatohepatitis

GSS 0.09 5.04E-05 0.17 1.29E-02 Steatohepatitis

ABCB4 0.21 5.78E-05 0.17 1.47E-02 Steatohepatitis

SLCO3A1 0.24 1.34E-04 0.16 3.42E-02 Steatohepatitis

AOX1 −0.13 1.70E-04 0.15 4.35E-02 Steatohepatitis

NAS Non-Alcoholic Fatty Liver Disease Activity Score.
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Covariate analysis
Todetermine if theCYP2C19downregulation couldbebetter explained
by something other than NAFLD, we conducted single linear regres-
sions of CYP2C19 mRNA abundance with each possible independent
variable in our clinical and demographicdata (SupplementaryData 12).
We found that only the histological markers of NAFLD (fibrosis stage,
steatohepatitis, hepatocyte ballooning, and NAS) were statistically
significant after Bonferroni multiple corrections (Supplementary
Data 13). However, several other factors like AST, ALT, age, metformin
use, and diabetes, were possibly associated (uncorrected p-value
<0.05). To determine if these factors, and sex, could have influenced
our results, we performed linear regressions between CYP2C19mRNA
abundance and each NAFLD phenotype with and without correcting
for each of these respective covariates. The change in CYP2C19 slope

before and after covariate correction was measured, and no covariate
affected the CYP2C19 slope by more than 16%, indicating the robust-
ness of the association between the histological NAFLD phenotypes
and CYP2C19 (Supplementary Data 14). This information collectively
suggests thatmetabolic comorbidities like obesity and diabetes,which
are highly correlated with NAFLD, are not the primary drivers of the
observed CYP2C19 downregulation. However, it is likely that these
comorbidities contribute additional information that,when combined,
can improve the characterization of CYP2C19 downregulation. To
provide evidence towards the most important features underlying the
CYP2C19 downregulation, we used a backward elimination approach,
narrowing to only remaining coefficients with p-values <0.05 in a
multiple linear regression model. From this analysis, the following
factors explain 39% of the variability in CYP2C19 mRNA abundance:
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fibrosis stage, age, metformin use, and ALT (Supplementary Data 18).
Thismodel is of limited actionability until it is optimized and validated,
but it shows that the additional factors increase the variability
explained from24% (fibrosis only) to 39% (after adding age,metformin
use, and ALT).

Importantly, NAS and steatohepatitis were dropped from the
multiple regression model, suggesting worsening fibrosis as possibly
the most important histological NAFLD feature in describing CYP2C19
downregulation. We tested this further by re-running the regressions
of NAS and steatohepatitis in each fibrosis stage separately (results
provided in Supplementary Data 3 and 6), showing that these factors
are not associated with CYP2C19 expression outside of the context of
worseningfibrosis. An additionalmultiple regressionmodelwas tested
by including just fibrosis stage, NAS, and steatohepatitis together.

These results (Supplementary Data 19) show that only fibrosis stage
and steatohepatitis diagnosis contribute a meaningful effect size in
describing the expression of CYP2C19. Further, only fibrosis stage was
statistically significant in this analysis.

NAFLD-CYP2C19 meta analysis
BecauseCYP2C19was consistently downregulated across three disease
severity phenotypes in our study, and due to its actionability in per-
sonalized therapy for CYP2C19 substrate drugs like clopidogrel, we
conducted a meta-analysis using 16 studies that measured CYP2C19
expression in NAFLD. Figure 6 demonstrates that CYP2C19 is con-
sistently downregulated in 15 of 16 studies, validating our findings. The
meta-analysis model indicates a log2 fold change of −1.13 in NASH vs.
control (Fig. 6A), a value translating to an expression decrease to 46%.
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Fig. 3 | Regression results for fibrosis stage (n =87). A Regression plots of the
Bonferroni-adjusted significant correlations between fibrosis stage and pharma-
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interval region (grey). B Volcano plot showing the slopes and p-values for the

regressions between fibrosis stage and pharmacogene mRNA expression. Hor-
izontal dotted lines correspond to the Bonferroni significance threshold, Benjamini
Hochberg (BH) significance threshold, and uncorrected alpha of 0.05, from top to
bottom, respectively. Source data are provided in the supplemental materials.
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Fibrosis stage 3–4 vs. 0–1 indicates a log2 fold changeof −1.22 (Fig. 6B),
translating to anexpressiondecrease to 43%. NAS 5–8 vs.0–4 indicates
a log2 fold change of −0.79 (Fig. 6C), translating to an expression
decrease to 58%. These meta-analysis values validate our findings.

Discussion
In this study, we screened for altered pharmacogene expression across
93 individual liver biopsies obtained from participants with varying
histological stages of NAFLD severity. Our results clearly demonstrate
that expression levels of several pharmacogenes are significantly
associated with the histological severity of NAFLD. Notably, CYP2C19
was severely downregulated. By conducting a meta-analysis in
16 similar studies, we validate that CYP2C19 is strongly downregulated
in NASH and advanced fibrosis.

Our study used the current gold standard RNA-seq technology;
however, it does have some potential limitations. RNA-seq more
readily measures high abundance transcripts, therefore the percent
fold changes we report could be affected by this bias. However, since
our fold change analyses compare the same genewith similar order-of-
magnitude expression levels, this measurement bias is not a major
concern. Another potential limitation is the conservative approach
taken with the Bonferroni multiple-testing correction. Bonferroni
unduly penalizes the statistical significance of results when factors

between tests are not completely independent. Since changes in the
expression of one gene could have downstream effects on another
genes expression, these changes are not all necessarily independent
and therefore the false discovery rate (FDR) Benjamini-Hochberg
correction can also be appropriate when interpreting results. A lim-
itation of our meta-analysis is that it was not based on a systematic
review for which a protocol was published (rather a narrative review).
We also did not conduct sensitivity analyses. Despite these limitations,
themeta-analysis accomplished our goal of assessing the repeatability
and inferring the magnitude of CYP2C19 change across a variety of
other NAFLD cohorts.

Medications such as rifampin, efavirenz, and ritonavir can induce
CYP enzyme expression, including CYP2C1951. Our analyses would
likely be improved by accounting for patients taking these medica-
tions, however, this information is not available for our cohort. Despite
this limitation, it is unlikely that our findings of CYP2C19 down-
regulation could be attributed to medication usage unless for some
reason healthier patients tended to take more rifampin, efavirenz, or
ritonavir. We do not have reason to suspect this in our patient popu-
lation nor in the other 15 studies in the meta-analysis. Another limita-
tion of our study is that we did not consider the effect of genotype on
mRNA abundance. Expression of functional CYP2C19 is increased by
the CYP2C19*17 allele and decreased by CYP2C19*2 and *3 variants52–54.
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Fig. 4 | Regression results for steatohepatitis grade (n = 89). A Regression plots
of the Bonferroni-adjusted significant correlations between fibrosis grade and
pharmacogene mRNA expression. Linear trendlines were fit (blue line) with 95%
confidence interval region (grey). B Volcano plot showing the slopes and p values
for the regressions between steatohepatitis grade and pharmacogene mRNA

expression. Horizontal dotted lines correspond to the Bonferroni significance
threshold, Benjamini Hochberg (BH) significance threshold, and uncorrected alpha
of 0.05, from top to bottom, respectively. Source data are provided in the sup-
plemental materials.

Article https://doi.org/10.1038/s41467-023-37209-1

Nature Communications |         (2023) 14:1474 8



The expression changes we found for CYP2C19 and other pharmaco-
genes would likely have been more precisely characterized by
including known loss-of-function genotypes in the analysis, but since
genotypes are unlikely to cluster in severeNAFLDpatients, this is not a
major limitation. We also recognize there are other ways to classify
steatohepatitis. Therefore, we also performed pharmacogene regres-
sions for NASH categorized by the SAF (steatosis, activity, fibrosis)
method55, and found the slopes were highly correlated with our stea-
tohepatitis results using the CRN method (Pearson correlation coeffi-
cient 0.88, Supplementary Data 9).

Another potential limitation of our study is that CYP2C19 mRNA
expression levels may not necessarily correlate with CYP2C19 enzyme
abundance. However, Fisher et al. demonstrated that liver CYP2C19
mRNA downregulation in NASH (p =0.193) corresponded to a sig-
nificant decrease in liver CYP2C19 enzyme abundance (p = 0.01)25,

indicating CYP2C19 mRNA is a good surrogate measure for CYP2C19
enzyme abundance. Additionally, the Human Protein Atlas demon-
strates corresponding high levels of mRNA and protein expression of
CYP2C19 in the liver, further supporting mRNA as a good surrogate
measure for enzyme abundance56. For certain CYP2C19 genotypes,
reduced mRNA expression is the mechanism behind the altered clin-
ical effect of drugs that are CYP2C19 substrates, providing further
evidence57. Lastly, NAFLD was recently correlated with 60% lower
omeprazolemetabolism (aCYP2C19 substrate)3, and a 28% decrease in
CYP2C19 protein58, which is broadly consistent with the expected
effect of decreased CYP2C19mRNA.

Our results have translational significance, as CYP2C19 is the key
enzyme in the bioactivation of the clopidogrel prodrug to its active
metabolite, and dysfunction of this activation pathway is known to
significantly impair response to clopidogrel59–61. Pharmacogenomic

Fig. 5 | Comparison of the Benjamini-Hochberg significant pharmacogene
expression changes between disease subgroups. A Upset plot showing the
commonality in significantly changed pharmacogenes between disease subgroups.
B Scatter plot showing mRNA percent change per unit of disease for the 17 phar-
macogenes in commonbetween all disease subgroups. For example, theplot shows
that with each 1 unit increase in fibrosis stage, CYP2C19 transcript abundance

decreases to 69% of the expression level at the prior stage. For each 1 unit increase
in NAFLD activity score, CYP2C19 transcript abundance decreases to 83% of the
expression level at the prior score. For each 1 unit increase in steatohepatitis grade,
CYP2C19 transcript abundance decreases to 61% of the expression level at the prior
grade. FIB fibrosis, NAS NAFLD activity score, STH steatohepatitis, BH Benjamini-
Hochberg. Source data are provided in the supplemental materials.

Table 3 | Regression estimates for the 17 pharmacogenes commonly changed in all 3 disease subgroups, converted to percent
fold change per disease unit

Gene Fibrosis FC per
disease unit

Fibrosis BH p value NAS FC per
disease unit

NAS BH p value Steatohepatitis FC per
disease unit

Steatohepatitis BH
p value

CYP2C19 0.69 8.08E-05 0.83 6.73E-03 0.61 5.08E-04

ALDH6A1 0.91 5.64E-03 0.93 9.31E-04 0.87 6.53E-03

MAT1A 0.91 2.40E-05 0.94 1.34E-04 0.87 5.81E-05

PON3 0.91 4.47E-03 0.92 1.50E-04 0.85 2.19E-03

AOX1 0.92 4.47E-03 0.94 2.81E-03 0.88 5.43E-03

GSS 1.05 1.89E-02 1.05 6.74E-06 1.09 2.46E-03

ABCC3 1.07 4.60E-02 1.07 3.37E-03 1.12 3.74E-02

GSR 1.08 2.01E-03 1.05 1.50E-03 1.10 1.86E-02

DHRS7B 1.08 4.11E-04 1.06 1.97E-04 1.10 7.20E-03

ABCB4 1.10 4.21E-02 1.15 4.51E-08 1.23 2.46E-03

ALDH1B1 1.11 2.27E-03 1.07 3.46E-03 1.16 6.58E-03

ABCC5 1.15 8.33E-03 1.11 4.91E-03 1.22 2.44E-02

CHST11 1.20 5.30E-03 1.12 2.13E-02 1.25 4.92E-02

CHST9 1.25 8.11E-05 1.09 3.31E-02 1.36 5.08E-04

SLCO3A1 1.27 9.35E-07 1.10 7.01E-03 1.27 4.88E-03

ABCC4 1.31 2.40E-05 1.11 2.99E-02 1.29 1.65E-02

ALDH3A1 1.31 3.47E-02 1.28 4.18E-03 1.54 3.74E-02

FC fold change, NAS NAFLD activity score, BH Benjamini Hochberg.
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Frades
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2019
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2015
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RNA−seq
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RNA−seq
RNA−seq
array
array
array
RNA−seq
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−1.13
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−0.90
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−0.80
−0.74
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95% CI

[−1.73; −0.53]

[−4.61; −1.82]
[−4.02; −2.06]
[−2.14; −0.89]
[−2.45; −0.45]
[−1.91; −0.35]
[−1.34; −0.52]
[−1.31; −0.49]
[−1.44; −0.30]
[−1.28; −0.32]
[−1.34; −0.14]
[−0.81; −0.38]
[−0.33;  1.59]

Weight

100.0%

5.6%
7.2%
8.7%
7.1%
8.1%
9.5%
9.5%
8.9%
9.3%
8.8%
10.0%
7.3%

Author

Random Effects Model Estimate
Sample size−weighted effect = −1.37

Moylan
Govaere
Powell
Gerhard
Ahrens
Seda
Hoang
Arendt

Year

2014
2020
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2019
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array
RNA−seq
RNA−seq
RNA−seq
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RNA−seq
array

N

 72
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 72
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 69
 53
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Fibrosis 3−4 vs. 0−1
CYP2C19 mRNA Expression Value

−1.22

−2.29
−1.78
−1.33
−1.30
−1.08
−0.98
−0.87
−0.47

95% CI

[−1.61; −0.82]

[−3.13; −1.44]
[−2.26; −1.30]
[−2.01; −0.65]
[−1.81; −0.78]
[−1.98; −0.18]
[−1.57; −0.39]
[−1.44; −0.30]
[−0.75; −0.18]

Weight

100.0%

9.8%
14.1%
11.6%
13.6%
9.2%
12.6%
12.9%
16.2%

Author

Random Effects Model Estimate
Sample size−weighted effect = −0.9

Suppli*
Powell
Seda
Hoang
Govaere
Ahrens
Baselli*
Arendt
Teufel*
Horvath*

Year

2019
2022
2019
2019
2020
2013
2020
2015
2016
2014

Tech

RNA−seq
RNA−seq
array
RNA−seq
RNA−seq
array
RNA−seq
array
array
array

N

 41
 93
 91
 78
216
 73
125
 62
 66
 85

−3 −2 −1 0 1 2 3

NAFLD Activity Score 5−8 vs. 0−4
CYP2C19 mRNA Expression Value

−0.79

−2.41
−1.34
−1.08
−1.00
−0.89
−0.73
−0.68
−0.64
−0.52
−0.36

95% CI

[−1.06; −0.52]

[−3.68; −1.13]
[−1.87; −0.81]
[−1.83; −0.33]
[−1.46; −0.53]
[−1.32; −0.47]
[−1.22; −0.23]
[−1.10; −0.26]
[−0.88; −0.39]
[−0.82; −0.22]
[−0.77;  0.04]

Weight

100.0%

2.2%
8.5%
5.3%
10.0%
10.9%
9.3%
11.1%
16.7%
14.6%
11.5%

Fig. 6 | Forest plots demonstrating the meta-analysis effect of NAFLD on
CYP2C19mRNA expression. Random effectsmodel estimates, weighted based on
inverse variance, are provided inbold. Sample size-weighted estimates (effects) are
also provided.A NASH vs. no-NASH control. Note, studies marked with an asterisk
(*) did not have a healthy control group, therefore subjects labelled “NAFL” were
used as the comparator. B Fibrosis 3-4 vs. 0-1. C NAS 5-8 vs. 0-4. Note, for studies

marked with an asterisk (*) NAS was not explicitly given therefore the following
analyses are included instead: Suppli et al, Teufel et al, and Horvath et al subjects
labelled “NAFLD”were compared to healthy controls, Baselli et al subjects labelled
“severe NAFLD”were compared to “mild-no NAFLD”. Source data for our study are
provided in the supplemental materials and data from other studies is avail-
able in GEO.
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studies have shown that when correctly transcribed CYP2C19 is halved
due to heterozygosity of the CYP2C19*2 allele, the bioactivation of clo-
pidogrel is significantly reduced and the antiplatelet efficacy is also
significantly decreased13,17,53. Because of this, clinical pharmacogenomic
guidelines recommend choosing a different antiplatelet drug for
CYP2C19*2 carriers13,17. Our data demonstrate that NAFLD can have a
similar magnitude of effect on CYP2C19 expression as compared to
CYP2C19*2. Even amoderate progressionofNAFLD (i.e. NAS from0 to4,
fibrosis stage from 0 to 2, or steatohepatitis grade 0 to 1) results in a
decrease of CYP2C19 to around 50%. Decreased CYP2C19 abundance is
especially relevant to the NAFLD patient population due to their car-
diovascular comorbidities and therefore the increased importance of
antiplatelet therapy. Based on our findings of decreased CYP2C19
expression and the clinical actionability of CYP2C19*2, it is logical to
suggest that NAFLD patients are at increased risk for clopidogrel
treatment failure and therefore more cardiovascular morbidity. Upon
subsequent literature review, we identified a study that demonstrated
hepatosteatosis was significantly associated with a lack of clopidogrel
anti-platelet effect, further supporting our hypothesis that CYP2C19
downregulation puts NAFLD patients at increased risk for clopidogrel
treatment failure62. Further translational research into this areawill need
to keep in mind that patients with NAFLD can have altered platelet
homeostasis, and changing tomore potent antiplatelet therapy (i.e., the
alternatives to clopidogrel) may contribute to a higher risk of bleeding
and will need to be weighed against the risk of low clopidogrel efficacy.

It is especially important to consider special populations like
NAFLDbecause large randomized controlled clinical drug trials are not
designed to conclude efficacy and safety for subgroups. Among four
big trials studying clopidogrel use (CURE, CAPRIE, CHARISMA, and
CLARITY-28)10–12,63, none conducted NAFLD subgroup analyses and
one of these trials even excluded patients with hepatic insufficiency.
Therefore, the approved dosages, efficacy, or safety findings from
these pivotal studies may not be representative of people with NAFLD.
However, these trials did conductother subgroup analyses. BothCURE
and CHARISMA found diabetes to trend in the direction of less clopi-
dogrel efficacy, though not statistically significant. Additionally,
CHARISMA found that obesity, hypertension, and hypercholester-
olemia showed similar trends toward lower clopidogrel efficacy,
though also not statistically significant. In fact, several studies have
shown that patients with diabetes have higher on-clopidogrel platelet
reactivity and lower clopidogrel active metabolite compared to
controls64–66. Diabetes and cardiometabolic diseases are highly asso-
ciated with NAFLD5–9 and therefore these data further support the
hypothesis that NAFLD is involved in reduced clopidogrel efficacy
through the downregulation of CYP2C19.

Besides clopidogrel, CYP2C19 plays a major role in the metabo-
lism of several other drugs including those with narrow therapeutic
range (e.g. diazepam, phenytoin, voriconazole, carisoprodol, ome-
prazole, citalopram, pentamidine, thalidomide, and others)57. Thus,
our data provide an opportunity to consider personalized treatment of
all CYP2C19 substrates in NAFLD patients. To make this a reality,
however, the clinical biomarker will need to be carefully chosen. Our
results show that fibrosis stage is the strongest association with
CYP2C19 mRNA downregulation. It is possible that hepatic necroin-
flammation, as measured by NAS or steatohepatitis, is associated with
CYP2C19 downregulation because it accompanies worsening fibrosis.
In contrast, there may still be independent effects of necroinflamma-
tion that could not be detangled analytically due to the collinearity
with fibrosis. This will need to be further studied for mechanistic
conclusions to be reached.We can infer, however, that themechanism
of CYP2C19 downregulation is not due to transcriptome-wide decrea-
ses in expression because there were more genes that were upregu-
lated with worsening fibrosis.

Our results indicate that exposure or pharmacodynamics of drugs
that are substrates for other pharmacogenesmaybe altered inpatients

with histologically severe NAFLD. Methionine adenosyltransferase 1 A
(MAT1A) was a robustly downregulated pharmacogene in our data and
across other studies30,33,34,45. Overexpression of this gene in bladder
cancer tumor xenografts has been shown to confer tolerance to
gemcitabine67 suggesting that NAFLD patients could have increased
liver toxicity when treated with gemcitabine due to a decreased
abundance of MAT1A. Aldehyde oxidase 1 (AOX1) was another con-
sistently downregulated pharmacogene in our data and across the
other studies26,32–34. The role of aldehyde oxidase enzyme coded by the
AOX1 gene in human drug metabolism is emerging. Substrates for this
phase Imetabolic enzyme aremany, including clonazepam, nifedipine,
and ziprasidone68,69. Ziprasidone elimination relies heavily on aldehyde
oxidase, therefore it is possible that NAFLD patients would exhibit
reduced clearance of ziprasidone due to less AOX1 expression.

Glutathione s-transferase pi 1 (GSTP1) was robustly upregulated in
our data and others26,32,34,45.GSTP1 codes for a glutathione s-transferase
enzyme that catalyzes the conjugation of polar glutathione groups to
enhance systemic elimination of chemotherapeutic agents and toxic
metabolites. This gene is the subject of much research due to its
variety of roles, one of which is promotion of chemotherapy
resistance70,71. It is likely that the phenotype of GSTP1 overexpression
inNAFLDpatients ismultifaceted, but could involve chemotherapeutic
resistance in hepatic tumors, and conversely protection from hepa-
totoxicity for noncancerous liver tissue.

The multidrug resistance-associated protein genes ABCC3,
ABCC4, ABCC5 were robustly upregulated in our data, agreeing with
previous findings at both mRNA and protein levels24,27,72. This suggests
that chemotherapy-resistance in hepatocellular carcinoma is likely to
be a much larger barrier to effective treatment for NAFLD patients.
Another hypothesis arises from these data, that chemotherapy resis-
tance in HCC driven by NAFLD will exhibit intrinsic mechanisms of
chemotherapy resistance. While a comprehensive review of NAFLD-
associated pharmacogenes is out of scope, we highlighted several
examples in which NAFLD patients could be at risk for drug failure
based on altered pharmacogene expression. These data-driven
hypotheses are especially strong when there is strong evidence of
the pharmacogenes role in that drugs response, and when findings are
repeatable across studies, as is shown in our meta-analysis.

While large, dedicated studies of drug metabolism in every
patient disease group (like NAFLD) could create more personalized
treatment regimens, such studies are oftennot practically feasible. Our
analyses address this problem by providing effect sizes for each of our
regression estimates and detail the percent change occurring with
each step in disease grade or stage. These estimates will support the
development of NAFLD-specific treatment decisions. Our regression
estimates will also allow physiologically-based pharmacokinetic
(PBPK) models to be developed to optimize dosing of drugs with
established exposure-efficacy relationships. Our study not only char-
acterizes pharmacogene changes in NAFLD, but also provides strong
validation evidence, by meta-analysis, that CYP2C19 is downregulated
in NAFLD. Our goal in clinical pharmacology is to customize disease
treatments based on specific characteristics of the individual patient.
To that end, our study provides evidence that NAFLD patients have
unique pharmacogene expression profiles across the disease spec-
trum, and thesedatawill contribute to developingmore individualized
treatments for NAFLD patients.

Methods
This researchwas conducted ethically and in accordancewith research
protocols approved by the Indiana University Institutional Review
Board (protocol numbers: 1506218127, 1011003025R008).

Our 2-step data analysis approach used (1) pharmacogene-NAFLD
regressions in our cohort of patients with NAFLD and (2)meta-analysis
specifically focusing onour identified gene(s) with the strongest signal
and the most potential for developing clinical interventions.
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Patient selection
This study was undertaken on liver samples obtained from 93 patients
with well-characterized NAFLD who underwent percutaneous liver
biopsies for their clinical care. Liver specimens were submitted to the
pathology laboratory for histological assessment via hematoxylin-
eosin (HE) and Masson’s trichrome staining and also snap frozen and
stored at −80C as part of a researchprotocol thatwas approved by the
Indiana University Institutional Review Board. All participants signed
an informed consent for the liver biopsy procedure by the radiology
proceduralists and a separate informed consent for saving a liver
specimen for future research purposes.

Histological assessment
The histological grades of steatosis, inflammation, ballooning, fibrosis
stage, NAFLD activity score (NAS), and presence of steatohepatitis
(NASH)were assessed across all biopsy samples in a blinded fashionby
a single experienced hepatopathologist using the validated NASH
Clinical Research Network scoring system73.

RNA Isolation
BioChain Broad Range Total RNA isolation kits were used to isolate
RNA (BioChain Institute Inc. Newark, CA). RNA quantity and quality
were measured using Nanodrop and Experion RNA StdSens and
HighSense analysis kits (BioRad, Hercules, California). RNA samples
with Agilent Bioanalyzer RIN > 6.0 were advanced for RNA library
generation.

RNA-seq
RNA libraries were constructed at Covance Genomics Laboratories
with IlluminaHTTruseq Stranded kits. 93 unique sample libraries, each
fromoneuniquepatient, proceeded toRNA sequencing. Sampleswere
pooled in groups of 16 with each pool run on the Illumina HiSeq 2500
platform in 4 lanes. Samples were balanced across pools based on
distribution of fibrosis stage, NAS score, date of biopsy, age, BMI, date
of RNA isolation, RNA quality indicator (RQI), and RNA yield.

RNA-seq data processing
Raw data QC was performed, including base composition quality,
fragment size, mapping read count, 3’ bias, read count mapping
breakdown, adapter/phiX content, heterologous organism con-
tamination, and sex/ethnicity prediction concordance. Greater than
100million readswere obtained per sample and readsweremapped to
a reference human transcriptome. The ratio between the highest and
lowest total mapped reads per sample was 4.2, indicating good read
depth consistency across samples. Each sample (or library) was
assessed in 4 or 5 replicates (assays). Data correlation of replicates
from the same sample were checked. One replicate from all 434 assays
was excluded due to low correlation. Replicates were aggregated into
one measurement value per sample per gene. There were 93 unique
patients in the final cohort with both phenotype information and RNA-
seq data.

The read counts for RNA-seq were normalized to the total read
counts across all genes for each sample, multiplied by 1,000,000 and
loge-adjusted (i.e. transcripts per million, TPM). The TPM method is a
widely used normalization procedure that effectively corrects for
batch differences in read depth without normalizing away, or dam-
pening, the biological signal74. Read counts of zero were assigned the
lowest nonzero read count for any gene in each sample to enable
inclusion of that data upon log transformation. We used R version
4.0.4 for this data processing.

Data analyses and statistical tests
The RNA-seq and phenotype data were analyzed using scripts which
are provided in the Supplemental documents, and broad descriptions
of the analyses are provided here. We used R (version 3.6.0, 4.0.2, and

4.0.4) for all analyses. R code was used to conduct the linear regres-
sions and the t-tests. T-tests were two-sided and based on unequal
variances. Bonferroni corrections were applied to p-values by multi-
plying by the number of association tests performed, and Benjamini-
Hochberg corrections were conducted using the “p-adjust” function in
base R. Pharmacogenes were filtered based on a list of 298 pharma-
cogenes asdescribedbywww.pharmaadme.org, accessed in 2021. This
list is based on input from seven major pharmaceutical companies as
to which genes perform or regulate drug metabolism or transport.
From this list, 255 pharmacogenes were present in the data. A list of
these genes and other raw data can be found in the Supplemental
documents. Missing phenotype grades/stages were removed from the
respective analysis, resulting in samples sizes of 93 for NAS, 87 for
fibrosis, and 89 for steatohepatitis.

For linear regressions, the histological grades or stages of disease
were used as independent variables on a continuous numerical scale
for testing the association with each pharmacogene. Each linear
regression test consisted of one pharmacogene mRNA level as the
dependent variable and one NAFLD histological measure as the inde-
pendent variable. Fibrosis was staged between stage 0 (no fibrosis)
through stage4 (cirrhosis).NAFLDactivity scorewas scoredbetween0
through 8. Steatohepatitis was graded as grade 0 (no NASH), grade 1
(borderline NASH), and grade 2 (definite NASH). Regression slopes are
loge-adjusted differences in expression and therefore represent a loge
fold-change (ratio) per unit increase in the NAFLD variable. These
values were converted to percent fold change by exponentiating
Euler’s number (~2.71828) to the loge fold change value. For the t-tests,
expression was compared between the disease groups as follows:
NAFLD activity score was split into low (≤4) and high (≥5); fibrosis was
split into stage 0 vs. rest, stage 0-1 vs. rest, and stage 4 vs. rest; and
steatohepatitis was split into definite vs. borderline/absent. T-tests
were performed to provide an orthogonal description of pharmaco-
gene changes using clinically meaningful thresholds of disease
severity.

A multiple linear regression model was built to investigate the
most important factors in describing CYP2C19 expression. This
approach utilized a backward elimination approach of the clinical and
demographic factors in the Supplementary Data 12. Factors were
removed from the model until each of the remaining factors had a p-
value of less than 0.05. Variability explained was measured by unad-
justed R-squared.

Meta-analysis
We conducted literature searches using Google Scholar, without
restricting results to any time frame, with the following search terms:
NAFLDgene expression liver. From these resultswemanually reviewed
titles or abstracts from the first 300 results, narrowing to 16 studies
that conducted gene expression profiling in liver samples from
patients with NAFLD. We additionally reviewed references from these
studies and searched the gene expression omnibus (GEO) identifying
11 more relevant studies for a total of 27 possible studies to include.
The following termswere used for the GEO search: Non-alcoholic fatty
liver disease, fibrosis, NAFLD, NASH, steatohepatitis, fatty liver. The
GEO results were filtered to: Homo sapiens, data sets, series, and
publication date: 2000 − 2021. Lastly, we conducted further manual
searches of pubmed, (using search terms: NAFLD gene expression
liver), finding no further studies, ensuring our literature search
exhausted most or all available studies that conducted gene expres-
sion analysis in NAFLD liver tissue.

We focused themeta-analysis onCYP2C19 because it was themost
consistently downregulated pharmacogene in our 93 NAFLD patients
and knowledge that this gene is downregulated has a large potential
for clinical actionability. Of the 27 identified studies, CYP2C19 expres-
sion data was available publicly for 11 studies30,32,34,45–48,75–78. We
obtained access to data for 3 additional studies thanks to gracious
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contributions by the study authors26,33,79. We were able to obtain
CYP2C19 differential expression results directly from the supplement
of 2 additional studies80,81, resulting in a final meta-analysis pool of
17 studies, including our own, with varying phenotypes. One of the
supplemental data sets reported FDR-adjusted p values using the
Benjamini-Hochberg procedure, and we back-calculated using the
number of genes and rank order to estimate the non-adjusted p-
value80.

Datasets available as “GEO2R” sets were analyzed in the online
GEO portal for Log2 fold-change using the default settings with Limma
(version 3.26.8)82. Datasets that were available as raw data were ana-
lyzed similarly to the GEO2R default settings, using Oligo (version
1.62.1) and Limma packages. For Datasets that showed consistent read
depth across samples we used the log counts-per-million normal-
ization in Limma, and for Datasets withmore inconsistent readdepths,
we used the Voom normalization as recommended in the Limma and
Voom documentation. All p-values were converted to 95% confidence
intervals using the metagen83 R package (version 4.9), followed by
forest plot generation.

Phenotype data was not the same for each study, therefore we
created groups of analyses that could be compared together. We
chosephenotypes that represent the 3 histologicalmeasures of NAFLD
severity (NAS, NASH, and fibrosis) based on criteria that were available
in themost number of studies. These categories are as follows: Fibrosis
stages 3-4 vs. stages 0-1, NAS 5-8 vs. 0-4, and NASH vs. absence of
NASH. Controls (absence of NASH) were defined as either healthy
obese, healthy normal-BMI, and in certain analyses where healthy
controls were not available, mild disease was used as the control
group. These are further specified in the corresponding figure legends.
From the 17 studies, one was not included in our meta-analyses
because it only reported steatosis values but not NASHdiagnosis, NAS,
or fibrosis.

In addition to the strict clinical grouping, the interpretability of
the meta-analysis results are enhanced by similar quantification of
mRNA in liver samples (using either RNA-seq or an array-based
method). Since measurements within each study were compared
between disease vs. no disease, the relative numbers (fold changes)
eliminate any heterogeneity that could be introduced by theoretical
differences between RNA-seq and the array methodology. For each
meta-analysis we used a random-effect model, calculating the average
Log2 fold-change weighted by the commonly used inverse variance
method83,84. This approach is rigorous because it considers that NAFLD
is not necessarily the only influence on CYP2C19 expression and is
superior to a fixed-effect model which would incorrectly assume that
the only influence to between-study heterogeneity comes from
population sampling85. We confirm that the random-effects model is
appropriate because the Cochran’s Q statistic was statistically sig-
nificantly larger than the degrees of freedom in each analysis, indi-
cating there is between-study heterogeneity (Supplementary Data 21).
In addition to results provided by the inverse variance weighting
approach, we also provide the sample size-weighted means to show
consistency with a more intuitive approach.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The source data contains logTPM pharmacogene RNA-seq values as
described in the methods along with the NAFLD histological disease
grades/stages/scores. Full RNA-seq gene count data is available
under GEO accession number GSE225740. Gene expression data
used in the meta-analysis can be found at the data sources provided
in Supplementary Data 20 and 22. Source data are provided with
this paper.

Code availability
All code used for this manuscript can be found at GitHub (https://
github.com/Nickpowe/CYP2C19_NAFLD_code.git).
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